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Abstract

Simple shearing deformations are analyzed as a means of in-

vestigating the effects of strain hardening, thermal softening, and

strain-rate sensitivity on the formation of shear bands. Linear

stability analysis is conducted for perturbations from homogeneous,

time varying deformations. Finite difference solutions are obtained

S for the fully nonlinear system of governing equations. Velocity

boundary conditions are emphasized although solutions for the case

of stress conditions are also presented. Three types of constitu-

* q tive models are considered: the power law model, the Arrhenius

law, and the Bodner-Merzer model. Inertia and heat conduction

are included. Qualitative features of plastic response for the

class of problems considered are illustrated by eighteen numerical

solutions. General conclusions on the critical conditions for the

stability of the solutions are difficult to draw in view of the many

features of the problem that influence the formation of shear

bands. Low strain hardening, high thermal softening, and weak

strain-rate sensitivity all contribute to shear strain localization.

The size of an initial perturbation is important in the stability

of solutions for the case of velocity boundary conditions, but it

4.. is less important for stress boundary conditions because of the in-

herent inhomogeneity of dynamic solutions in the latter case.
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I. INTRODUCTION

Localization of plastic deformation in the form of shear bands

is observed frequently during tensile, compressive and shearing defor-

* .mation tests. Shear bands occur in a wide range of applications such

as ballistic impact, dynamic fracture, cryogenic behavior of materials,

high velocity forming, machining and grinding.

Current understanding of the phenomenon is not fully established;

however a common view is that at high strain rates the occurence of shear

bands is related to thermal softening features of material behavior. That

is, shear bands are thought to initiate under conditions of nearly

adiabatic deformation when thermal softening overcomes strain-harden-

ing so that the rate of change of the flow stress becomes equal to

zero 1 1]. At this stage of deformation the flow stress decreases

as temperature increases, resulting in inhomogeneous deformation.

4This inhomogeneous deformation results because the heat generated by
-S

plastic working is greatest in regions of highest strain rate. This

leads to further softening of the material in these regions, and the

cycle is repeated until the deformation is localized in the form of

5' shear bands. The existence of material or geometric inhomogenieties

appears to be necessary for triggering this mechanism. The exact

nature and size of such inhomogeneities are not fully understood;
however, it is believed that these defects play a major role in shear

band formation.

Early observations and discussions of shear bands are attributed

to Zener and Holloman (2], who observed a white etching band

in an 0.25 C, low alloy steel subjected to a rapid punching test.

They showed that a local temperature of 1000 C is reached with a total

i
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shear strain of (5.0). A large number of similar experiments are cited

in a survey by Rogers [31. strain rate sensitive materials are viewed

as being less sensitive to localization [4). Some metals show very

stable behavior in their superplastic ranges where they are well

characterized as nearly Newtonian fluids. Rate independent models of

plastic response, without thermal softening, exhibit shear strain

localization when the effects of geometric softening due to lattice

rotations and/or non-normality -of the plastic strain-rate to the

* yield surface are included. These effects have been presented fully

in a recent review by Asaro [51.

Experimental investigations of shear bands often are concerned

with metallurgical effects on the onset of localization [6], and with

measuring the strain, strain-rate and temperature at which bands are

formed [71,(121. Analytical discussions of shear bands seek, for

* assumed constitutive models, the critical conditions which character-

ize the instabilities reported experimentally. Most of the assumed

constitutive models are based on a macroscopic point of view due to

the associated complexity of plastic deformation at the microscopic

level. Moreover, the pre-localization constitutive equations are

assumed to hold when localization occurs. Several authors attempted

to obtain a simple stability criterion for adiabatic plastic deforma-

tion by means of a linear perturbation analysis [8], [9], [10], [11].

However, the use of constant coefficients, evaluated from the homo-

geneous solution at the time the perturbation occurred, imposes a

severe restriction on the validity of such results. In other analyses,

computer simulations have been presented for the fully non-linear

system [12], r1 3].
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This work presents a general analysis of shear-strain local-

la
ization in simple shearing deformations of thermal--visco/plastic

materials. The system of governing equations for a one-dimensional

simple-shearing deformation is formulated in Chapter II. An exactV
solution for quasi-static deformation with no heat conduction is pre-

6.. sented in Chapter III for materials with temperature-dependent

viscosity and no strain-hardening. In Chapter IV a linear stability

analysis is presented in which the time-dependence of the coefficients

in the linearized equations is retained. A stability criterion moti-

vated by a bifurcation type of instability is also presented.

In Chapter V, a numerical simulation of the fully nonlinear

system of equations is presented for a number of constitutive

equations. These constitutive equations exhibit strain-rate

sensitivity, strain-hardening (softening) and thermal softening

(hardening) that are representative of the response of metals. The

major objective underlying such numerical simulations is to study the

material response to small initial perturbations of the homogeneous

solution. This work serves as a means to obtain a better insight into

the phenomenon of shear-strain localization, and to reconsider some of

the common ideas concerning shear band formation.

coo
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I1. PROBLEM FORMULATION

Consider a simple shearing deformation of an infinite plate at

constant strain rate. The plate has thickness H in the y-direction

as shown in Fig. IT.1. The lower edge (y = 0) is fixed, while the

upper edge (y = H) has a velocity (v = v ) in the x-direction.0

Assume that all physical quantities are uniform along the x and z

directions so that the deformation depends only on one space coordin-

ate. Under these conditions, the only non-zero displacement component

is in the x-direction, and the only non-vanishing stress components

are a ,oa , G I a . The equations of momentum balance reduce to:
xy xx yy zz

yy = Po atI~la

yy p (II.l.b)
ay

where a and a are the components of the Cauchy stress tensor, vxy yy

is the particle velocity in the x-direction; and p0 is the mass

density. Hereafter the shear stress a will be denoted by T. The* xy

total strain is assumed to be composed of an elastic plus a visco-plastic

part, i.e.
e Yp (11.2)y = y +Y(I2

where the elastic part of this decomposition is given by

e = -- (11.3)
G

in which G is the elastic shear modulus. Differentiating (11.2) and

(11.3) w.r.t. time and replacing the total strain rate by the velocity

gradient one obtains
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V,_+ 1 aT + ___ (II.)ay G at at

-. The heat Q generated by plastic deformation is assumed to be

related to the plastic work Wp by

at at - T a(I.5)

'. where the factor 0 is taken to be approximately 0.9. Heat transfer

in the material is assumed to satisfy Fourier's law of heat conduction

h =-k (11.6)
y 3y

where h is the heat flux in the y-direction, k is the thermaly

conductivity and 0 is the temperature. From (11.5) and (11.6) the

energy balance equation can be written as

328 + -Y (11.7)
o at ay2 at

where c is the specific heat per unit mass.

The remaining equation is the constitutive equation that

characterizes the material response to the given loading. We consider

materials which exhibit strain-rate sensitivity, strain hardening,

and thermal softening or hardening. Thus, in simple shear the flow

stress is assumed to be given by a relation of the form

T= t (6,y p, P) W =ax) (11.8)

The governing system of equations used for modelling the

features of shear strain localization in thermal visco-plastic materials

can be summarized as follows:

A,.'p I .? . 4 . ." . ~ ~ *4* *- V
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a av DT (11.9)

ay, _ v 1 DT
at Dy G at (1.10)

"ae _ k 28
36. a + Ta- (1I.1i)
at P0c  Dy2  Poc at

p *T = i(0, y , ;P) (11.12)

or

yP = (T, yP, e) (II.12a)

The complete initial-boundary value problem is defined once initial

and boundary conditions are prescribed. These conditions will be

given when numerical solutions are discussed (Chapter v).

Dimensionless Form

It is useful to rewrite the system of governing equations (11.9,

12) in a dimensionless form. The dimensional quantities in the

" system (11.9,12) will be relabeled by a superposed , and then the

unlabeled quantities will denote the corresponding dimensionless

quantities.

The dimensionless quantities are defined by

t

. t = ,

00
k O

v = v/(H/t), k = 2A." 0 H2  0 --

H22
SY 02H0

0

.. yp = ^ -p/j' P = o = o
"O o O "^2 '2

Tt H
1" 0 0

G S- G0

00

I.

* *
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0 o p 0 0 ' pV 0 t/Yo T 0 T Y 0/

where the subscript "o" refers to quantities evaluated for the

homogeneous solution at the time a perturbation is introduced, while

the superscript "o" refers to evaluation for the homogeneous solution.

The characteristic time t 0 =l/20y is the time required to obtain a
0. 0

unit shear strain at the strain rate y The coefficients V,S and

T are defined by

They are measures, respectively, of the strain rate sensitivity,

strain hardening (S < 0), and thermal softening (or hardening).

The dimensionless quantities defined earlier are chosen such thlat

once introduced in the system of governing equations (11.9.12) , the

resulting system will be exactly the same except that all quantities

are dimensionless. The dimensionless form will be used in the remain-

der of this work.

V. ~ ~ *-V
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III. ANALYTICAL SOLUTION FOR A SPECIAL CASE

Analytical solutions for the nonlinear system (11.9-11.12) are

difficult to obtain due to nonlinearities associated with the

constitutive equation (11.12). Examples of the nonlinear constitutive

equation are the empirical relation,

T = VO (y p) m ( 1 (II l

where ji ,v, m, n are material parameters. and the Arrhenius law
0

W 0 exp { -[B(Y P) - T] K } (111.2)

where w0 is the frequency of vibration of dislocations as they attempt

to overcome obstacles, TB(YP) is the stress barrier amplitude - which

is a function of the plastic strain in case of a strain hardening

material; W is the Activation volume; Kb is Boltzmann's Constant.

For physically reasonable models these quantities satisfy,

kp

w >>, T < T( Y

TB(Y P -E- > 1> (111.3)

TB Kb)

The function T (y P) is assumed to be positive, monotonic and to have
B

a saturation limit TB as - ; furthermore, its derivatives are

assumed to vanish as y -* 0

d In order to be able to obtain an exact solution that exhibits

some features of the solutions of (11.9-11.12), consider the following

special case:

% .- - -. A -
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i:.-iav
. quasi-static deformation, i.e. p 00 = 0

no heat conduction, i.e. k 0 0

* no elastic effects, i.e. G -*

constant shear stress boundary conditions, i.e.

T(O,t) = T(H, t) = T1

Non-Newtonian fluid with temperature dependent viscosity, i.e.

y ( av ; n > o (III.4)

The effects of thermal - softening (hardening) are obtained for

negative (positive) values of the power v. Although this model

does not represent solids of engineering interest, it is attractive

because it allows an analytical solution that gives insight into

instabilities of solutions of the system (11.9-11.12) as well as

providing a reference for checking the validity of the solutions

obtained by a linear perturbation technique and by a finite difference

method. Under these assumptions the system of equations (11.9-11.12)

reduces to

-- 0 (111.5)ay

ap av (111.6)

.4 at ay

av avn

28 r I t - (111.7)

= (6 (&' v) (111.8)0 ay

where r,= 8/P 0C. From (111.5) and the stress boundary conditions

the shear stress is given by

'p
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T(y,t) T (111.9)

which is kept constant throughout the deformation. Eliminating

(I-) between equations (111.7) and (111.8) one obtains
ay

D . = h- (III.10)
at 1

1 n V
"-. where n = rlT l(-) is a positive constant and v = . Integration of

0

equation (III.10) gives

. , 81t) = {flyyt, ) } I (IIl.ll)

where f(y,t,v) 6 (y) + n(y I l)t. (111.12)

This expression for the temperature e(y,t) can be used to obtain

the following expressions for other quantities of physical interest

Be (y,t) = n f(y,t,v) (111.13)

•'(y d~o (y) '4(V)

(. ly,t) = o dy d( f(y,t,;v) (III. 14)1 1

(yt) ( n f(y,t,v) V) (111.15)
0

where
0 M = - * (111.16)

Analysis of the exact solution:

The functions f(y,t,v) and 4(v) characterize all the features

of the solution to the problem. The function 4(v) is negative for

> 0 and < -1, while it has positive values for -1 < V < 0.

The function f(y,t,v) is always positive for v > -1. For v<-l there

4
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is a critical time

t(0 (y))V+(t = - (IIT. 17)
~cr r I(v; )I

at which f becomes zero; f is negative for t > t Three types of

behavior can be distinguished.

(i) Thermal hardening for > 0

For v > 0, O(v) is negative and f(y,t,v) is positive. Then, from

(111.13-111.15) the quantities a - , and - vanish asat a t ay

t + Such solutions are strongly stable.

(ii) Thermal softening for -1 < < 0

For in this range both P( ) and f(y,t,v) are positive.

The quantities at ' at become unbounded as t -at I at a y

The solution grows in time as shown in Fig. (III.Z for the plastic

strain rate. The shape of the plastic strain rate distribution

varies slowly with time at small times and becomes independent of

time as t - . There is no tendency for localization of shear

straining. Based on the uniformity of the strain distribution;

solutions such as those shown in Fig. (II.2)are said to "grow"

rather than to become unstable. The term "instability" is reserved

for bifuration phenomena in which the homogeneous and perturbed

solutions grow at different rates so that differences between these

solutions become large at late times as shown in Fig. (111.3).

- This notion of instability corresponds to experimental observations

of shear bands with localized deformations which are large relative

*[ to deformations in neighboring regions.

,."V
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(iii) Thermal softening for v < -1

In this regime (v) is negative; f(y,t,v) is positive for

t < t and becomes negative for t > t . All quantities in (III.11)
cr cr

and (II.13-111.15) become unbounded as t - t . Solutions exhibiting
cr

Isuch behavior are termed unstable, although both the homogeneous and

perturbed solutions become unbounded at the same time.

Concluding Remarks on Exact Solutions

1. The exact solution shows the possibility of a type of

instability in which the solution becomes infinite in a finite

time.

2. Less thermal softening is required to obtain unstable

behavior for weakly strain-rate sensitive materials (i.e. n << 1)

since Condition (iii) is v < -n.

.,

S.
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IV. LINEAR STABILITY ANALYSES

In view of the extreme difficulty of solving the non-linear

problem it is of interest to conduct stability analyses on a linear-

ized version of the problem. Several authors have discussed this

approach [9 ], [11]; however, for most of this discussion the homo-

geneous solution which is to be perturbed is held constant at the

*values corresponding to the instant at which the perturbation is

introduced. This assumption, which is made to obtain linear equations

with constant coefficients severely limits the applicability of the

analyses. Extensions of the analysis to cases of time - varying

coefficients have been presented by Clifton [14] and by T. J. Burns

[1C.], who employed the direct Lyapunov's method for a thermo-viscous

material. (i.e. elasticity and strain hardening are neglected)

In this study we seek a rigorous linear stability analysis to the

general problem defined by Eqs. (11.9-11.12). Then, we present a modified

stability criterion that extends the validity of the linear approach.

IV.i. Linearized system of equations

S:-[ We consider the linearization of equations (I. 9-12) about

.. the homogeneous (parallel flow) solution. We seek solutions of the

form:

T(y,t) = t(t) + 6T(y,t)

v(y,t) = v (y,t) + 6v(y,t)

yP (y,t) = YP (t) + SY p(y,t) (IV.l)

8(y,t) = 60(t) + 68(y,t)

where 6T, 6V, 6y , 60 are the differences between the solution T, v,

yp , 0, that includes the effects of a perturbation, and the

% j

,P ".O"--"-.< -;.; :":. .":' '(-r'-', " .-.; 2.".-..-" '- .. "".- '' .. ':2 ;- -'. ., -<-',N .N ,.- ." "";> :-"-":.'""-%
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homogeneous solution T , V y , The homogeneous solution is

assumed to be perturbed at (t = 0) by a small periodic fluctuation

in the y-direction. We substitute solutions (IV.l) into the non-

linear system (II. 9-12), and retain only first order terms in

6T, 6V, 6yp , 6e. In this way we obtain the following linear system

of partial differential equations in 6T, 6V, 6yp, and 6e.

" a 1
(6v) = - (6 T.) (IV-2)

- (6yp) =v) (6T) (IV-3)
at ay G at

a- (6) = r° a (6r) + r I °6T (IV-4)
at 0 at 1

% a O yP) = V 0 6t + T0°Se + s 6P (Iv-5)

• . k

where r c

In these equations the coefficients V°, T°, S0 are defined by

V 1 is a measure of strain-rate sensitivity;

T - -- O is a measure of thermal softening (T > 0),Dao
0

or hardening (T < 0) - thermal softening is

the usual case for crystalline solids;

.- - is a measure of strain-hardening, (or softening

if negative).

The functions V0 , To and are evaluated at the homogeneous solution

at time t; hence, these are time dependent coefficients. For convenience

of notation, we suppress the "6" in the following analysis (e.g. 6T T).

We rewrite equations (IV.2,5) in matrix form for a solution vector

i : . ' . .0, . . , . . .e . . . . . .... . , . . . . . . " -. -*. , . . . - . ' . ' . . . . . , . . " . . . . - . . . ' . . . . . . . . ..'" " '. " . . . . -. " . -. " -. ". .
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3.-,.'.

i T (Iv.6)

'--3i

I% ~.* YP

The resulting system of equations has the form

L = A w + A w,t + Ay W + A w, = 0 (IV.7)

where a comma denotes differentiation with respect to the following

subscripted variable and the coefficient matrices are given by:

"0 0 0 0 Q 0 0 00

- 0  V0  T°  S0  At 0 0 0 0
A- - G

0-. o0 -rl (T°V°+°) -r 1TT -r 1 T°SC 1 0 1 0

-0 -V 0-T 0  -S 0  0 C 0 1

, • (IV.8)

0 -1 0 0 0 0 0 0

-1 0 0 0 0 0 0 0
A .- 0 0 0 0 A 0 0 -r O

"- 0 0 0 0 0 0 00

The coefficient matrix A, is time-dependent, but it does not depend

on the spatial coordinate y.

We introduce the Fourier transform defined Ly

= f e -  F(y,t) dy .V9a

,T

* . . . -' * *

.. , • . ?X.- -



- 19 - -

-19-

F F(y,t) ei  F(,t) d •(IV.9.b)

Then taking the Fourier transform of L(w) = 0 we obtain

-gt)=c(&,t) W( t) (IV.10)
t%

N or, suppressing the dependence on

-s - (t) = C (t) (t) (Iv. l)[idta

*i where C(t) is given by:

0 -i&/P 0 0
0

0 0

0 r1 (-1 0vO+ O) r T r2 r 1 o

O V0  T °  S0

Equation (IV.ll) represent a system of linear, first order ordinary

differential equations for the perturbation vector w(&,t).

IV.2) Solution of the Linear System:

Analytic solution of the system (IV.lI) can be obtained in an

iterative way as follows:

w(t) = (O) + [C(n) ] dn
J0

(0) + (I) C(0) + fC( x)w dx])
o

Continuing the iteration process, we reach the solution:

* (t) S(t) ^(O) (IV. 13)

* . - . .
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where, the matrix S(t) is known as the matrizant of the differential

equation, or the "solution operator", which is given explicitly by

S(t) = I + fC(n) dn + f C(n) C(x)dx dn + ... (IV.14)
0 0 0

Or, in compact form,

(n)
S E(t) 7 ith (IV.15)

SC(t) t(n) ut(t)
(t) C (n) C (n) dn (IV. 16)

0

epnxand

., C (t) () = I.(IV. 17)

The solution expressed by (IV.14,17) is the general solution of

j. equation (IV. ll); however in the special case where C(t) commutes

*(1

with C(t) the solution oerator S(t) can be expressed concisely
in the form

"> It

":SWt exp C h~) dn ](IV.18)

" (see Appendix I).

" " " " "., .,"," "", ",. ," . "r "'2,.;. -,. ' ',_' -',. -" ."-",, '", ''.. ' .'. _',',•- . .. ."- , .. "'-.- -%-
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IV.3. Stability of the Solution

Consider the solution in the general form (IV.14) which repre-

sents an infinite series. Taking the norm of each side, one obtains:

"'' lS(t)j 11 = 1I C(t) (n) 11 <  I 11C(t) (n) 11

n=O n=O

However,

I IC(t)(n)II = I ( Gn) C()(n)dlII

and for finite time intervals (O,t), we can write

":jC(t) (n) 1 < f IIC(n) C(,)(n-l) jd n < f i C(n) JI IC(n) (n-l) Idn" =0 =0

Then

IjS(t) l < 1 + I. IlcG n) llI lccn) (n-l)lIdn . (IV.19)
Sn=l 0

Let us assume that supl ic() I exists and is equal to a finite

value p, say. In this case we obtain:

22eI.. IS(t) II < 1 + pt + pt+ . Pt

or

.IS(t)II < e[supjC(n)lI]t; Vn E [o,t] (IV.20)

,4.

,','-p. ' . ' .' .''' "... . . ,-"v - -". -"."-" ,v ,"."" " '.v , . " " - ' " -".".-"•" '"
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From (IV.20) we conclude that the series S(t) is uniformly and

absolutely convergent for all values of t as long as the maximum

"" "," (supremum) norm of the coefficient matrix C(t) is bounded for any

finite time.

IV.4. Stability criterion for thermal-visco-plastic deformation

The solution (IV.13) gives a direct relation between the vector

of initial perturbations and their corresponding values at a later

time (t > 0). The argument usually used to determine the stability of

such solutions is based on the signs of eigenvalues of the solution

operator S(t). Such a criterion serves to determine whether the

initial disturbances grow (or decay) with increasing time. However, as

mentioned in Chapter III, we seek a bifurcation process for which the

perturbed solution grows much faster than the homogeneous solution.

Also, we require the unstable growth to be confined to some region of

the slab thickness. Motivated by this notion of instability, and in

order to distinguish between a uniform growth Fig. (111.2) and an un-
"'-o..

stable deformation Fig. (111.3), we suggest the following criterion.

The system of equations (IV.7) is called "well-posed" and its

solution given by (IV.13) is called stable if there exist constants

K and a, both positive, and independent of initial values w(0) such

that-
supjIS(t)jj < K exp(t). (IV.21)

The quantity supl S(t)IJ in (IV.21)is the norm IIS(t) II0 defined in

(IV.23).

If (IV.21) holds for IIS(t)IL , then it also holds for the L2-norm
defne byJs(t)Xj 12

"-[ defined by I IS(t)11 2 = max. ~ for each t.
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The notion of well-posedness (IV.21) implies continuous dependence

on the initial data. Moreover, this estimate (IV.21) implies that a stable

solution can grow exponentially as long as it can be bounded by a suitable

choice of (K,a) for any finite time (t) and finite wave number (&). The

inequality (IV.21) suggests much weaker conditions for stability than the

requirement that all the eigenvalues Xi of S(t) satisfy i < 0. An essential

feature of the notion of instability adopted here is the requirement that

there are solutions that become unbounded in a finite time.

In order to apply the criterion (IV.21) we note from (IV.20) that

(IV.21) is satisfied if there exists an a > 0 such that

sup IIC(rI)II < a. (IV.22)
nE[O,t]

That is, the criterion (IV.21) is satisfied if the norm of C(t) is

bounded for any finite time. To express this constraint in terms of

the elements of C(t) we choose sup I IC(,)jI to be defined

n€E[0,t]
as follows:

nsup I IC(n)lI = IlC(t)I. = max I Ici.l. (Iv.2)
'--

nE[0,t] l<i<n 1

Applying (IV.23) to the coefficient matrix C(t) given by (IV.12), we

find

max(Rl 1 R3 ,R 4 ) = sup 11C(n)I
nE[0,t]
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where the row sums are

R 2IGJ[1V01 + IS1+ 1T'1] + JG~I
2

R 3 =Ir1 .[I'V 0 + +' + ITSl+ rTT-r. 2

R 1v01 + 1501 + 1T'l
4

Since for constant strain rates the time dependence in the expressions

for the row sums is restricted to the functions TS ,V0  and T

we can write the stability criterion (IV.22) in the form

{jTjb1) I+ 1S0(fl) I + JV0(n) I } < a (IV.24a)

and
1T (n) f { T0(n) I + 1s0(n) + 1v0(n) j < B (IV.24b)

provided that

T0 > T , nEI ,t],(t<rr>0

0
where the restriction on T (Wi is imposed because the shear stress must

be greater than some yield value, Say T , for constitutive equations of

the form (11.12) to apply-

The stability criteria (IV.24) have been derived for the case of finite

wave numbers F.. This restriction can be removed by considering directlN"

the rate of growth of the L -normn of the solution w of the system

%_ _ _ _ _ _ _ _ _ _

(IV.7). (See 7ppendix IV)

IV.5. APPLICATIONS OF THE STABILITY CRITERION

IV.5.l. The quasi-static model (111.5-111.8)

The analytical solution for this model is given in Chapter (III).

For the constitutive law (111.8)

Tl/n

0

0 1-n -

0 0 1 T 1~ ~ n~!. (0 )

at

~~~~.- ~ ~ ~ ~ T v* 0* n~ P 0!t . ~ .. * .*:~~~.;.*- ..- ,
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Substituting the values of T0,T0S and V in the inequality (IV.24)

we obtain

()vIVITleO(t)- + 0(t)- V< a. (IV.25)

where

Ti

Substituting the homogeneous solution

1

0 - v+l
0 (t) = (1 + 1(v+l)t] +

into (IV.25) gives the stability requirement

f(t;')( + IVIaf(t;;- < a (IV.26)

where

f(t;v) = 1 + n(0+l)t.

Obviously, the inequality (IV.26) is only violated for V < -1. In

this case the function f becomes zero at a critical time

m - 1

tcr -j i+l . (IV.27)

Therefore, we conclude that the deformation described by this model is

stable for v > -1. This is the same conclusion obtained from the

exact solution (111.11-111.16). Furthermore, the linear stability

* analysis predicts the same type of singularity as that obtained for the

exact solution, as well as the same critical time. Thus, the criterion

(IV.21) appears to have promise for characterizing the stability of

homogeneous deformations.

S.

€ D1.F """,,.-",,L2 '2"_ .i R',g'2¢i,.2'
" ,

-. "'2-.,.''..",.-..,•," _," "-""." - "" " " _ _'-,'''' '2
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IV.5.2. General polynomial constitutive law with
velocity boundary conditions

We consider the general system of equations (11.9-11.12) with the

constitutive equation (III.1) written in the form

b•vl•

,4' = 1 (.)m]/n (IV. 28)

A homogeneous solution for this model (neglecting elasticity) has

-been given by Clifton, et al [141. The temperature and stress in this

solution, obtained for a constant strain rate 0' are

1-

0(t) = ( t(l+m) v + (IV.29)
0

T 0(t) = U-. 0 t)]-m (IV.30)

where,

h Y- r 0 (l+m+n) > 01'4
P ,Y r 1 0 00~sn

l1-v
f(v,m) - +

1+m

- *O¢m n+ O.

For the constitutive equation (IV.28) the coefficients T ,S ,V

are

T= - - ( (IV.31a)
n 00

.-
dy;
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= - (IV. 31b)
n 

l 0 0 1)

n' =) - (IV. 31c)
""" T

~From (IV.29-IV.311 the stability criterion (IV.241 becomes

,'' -. - •{i +Jmj 0  (80) tm+-l+ P[(e0 -t m I< 8 (IV.32)

From (IV.32) the stability criterion is satisfied as long as neither

of the functions (60) , (0)- becomes unbounded. Such singularities

can occur only for f(v,m) < 0 and at

I /l+m

t = ----~ (IV. 33

Cr f

Stability boundaries based on the sign of f(v,m) are shown in

Fig. (IV.l).

The function f(v,m) is negative in regions (I) and (III) defined

by

I: V > 1 and m > -1

III: V < 1 and m < -1

Regions I and IV are of little interest in applications since materials

are generally thermally soft. Region III is seldom, if ever,

applicable because few materials exhibit the strong strain softening

that is characteric of this region. Region II is characteristic of

most metals. Thus, it appears that the stability criterion is satis-

fied for most metals that could be modeled by (IV.28). In view of the

fact that Region II contains points corresponding to both strain
4..

.1*

*..- * . * . . < *°. . *. .. . . . 2

-
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'm..m

f >0 f<0

"stable"

0.0 /I.0

1

4.-4

"/4 s

~1 sable"

14

%°dFigure (IV-l) -Sign of f (v,m) in the (v-m) Plane

IL

€.K
r.K

F ; ,,;'€ ,J ,"". "',"". '''£ ,:,". , ',g 'gtZ'2"""". ,_'." . . , ".".. -. "- •" •. .
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softening (m < 0) and thermal softening (v < 0), it appears that

stability in the sense of (IV.21) is satisfied for a wide class of

materials.

Consider the term in "in euation (IV.32); and denote it p(t),

* then equation (IV.32) becomes

0 () P(t) < a
n

If P(t) is bounded, say by P max.' then the solution to the perturbed

problem grows no faster than e$t with 8 P 0max. Whether such a
n

solution to the perturbed problem grows or decays depends on the thermal

softening and strain hardening parameters, v and m, respectively. In

either case, the rate of growth or decay is affected by the strain-rate

sensitivity parameter (n). Small values of n (i.e. weak strain-rate

sensitivity) allow high rates of growth or decay.

If P(t) is unbounded, then the problem (IV.ll) is not well-posed.

-d

IV.5.3 Bodner-Merzer Constitutive Model

Consider the system of equations (11.9-11.12) with the constitu-

tive model (introduced by Bodner and used by Merzer [13]):

T R T(jP, 6, Wp ) - T I (WP [f(n)l]c() (IV.34)

where

f(n) = 2 kn n, n 2D

C (e) -- n() = + b, a > 0, b < 0;n(e) ' O

-rW
p

T(WP) = T1 -(T T 0 )e , m > 0, r1 > t
o.o o

.....................................................................
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I.

Neglect elastic strain rates in (II.10) and combine (11.9) and (II.10)

6. to obtain

2 (IV. 35)

ay

where is the plastic strain rate, as in (II.12a). Substitution of

(IV.34) in (IV.35) gives

p -L= (S y + S e + s wP

o at 1 yy 2 ,yy 3 ,yy

IS, as 3 (IV.36)
+ SI  , + 2  aS3 + w pW

a1 + ,y ay ,Y ,y)

where the coefficients S are for the model IV-34, given by

S1 2-T T/[n - f(n) (IV.37a)

S = - aT - £n[f(n)]/(2e n (IV.37b)

S T- =mT ( -1 - 1) (IV.37c)
aWp  T I

Equations (II.11) and (IV.36) constitute the governing equations for

the evolution of the temperature 8 and the plastic strain rate =P,

T in these equations is obtained from (IV.34) and WP is obtained from

the integration of the second part of (11.5).

For a homogeneous deformation the coefficients S. are y-independent,

*i.e.
S. = Si(t)

and for i = 1, 2, 3 (IV.38)
as.10

Dy 0

Moreover, if we confine attention to the late time response; then we

can set

S 3(t OD) = 0 (IV.39)

. . . .. . . . . . . . ,. .. ,
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Based on these assumptions the governing equations reduce to

P- = + S2 6 (IV.40.a)

0oat 1 ,yy 2 ,yy

a = r 0 + r t(,) (IV.40.b)

where
cF3) [f() (IV.40.c)

Introduction of the solution vector
.F

z-- 0 (IV.41)

allows equations (IV.40.a,b) to be written in the form

Zi = A (2  Z + A (0 ) Z (IV.42)

where the coefficient matrices A (2 ) and A (0) are given by

A. AA2 (0) (IV.43)

A(2 = s/ 0  ripo 0 ) 0  r 0 )
Taking the Fourier transform (cf. (IV.9)) of equation (IV.42) one

obtains
Z =c(t) z (IV.44)

where

2 2

c(t) (IV.44.a)

''\ rl _&2 rO
=(o;0

F.%
* . *,. .
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For the stability criterion (IV.22), stability requirements for the

considered model can be given by

P 11 +1S2 1) < a ; a > 0

2(r 1 + E r ) < a ; a > 0 (IV.45.b)

The inequality (IV.45.b) is always satisfied; however the inequality

(IV.45.a) is violated as soon as either

yP 2D , i.e. Ti - 1 (IV.46.a)
0

or

68 , i.e. n(O) - 0 (IV.46.b)
Jb I

The second limit is reached for all homogeneous deformations without

heat loss, if these deformations are carried to sufficiently large

strains. Thus, the material model characterized by (IV.34) is

especially sensitive to temperature increases. For the numerical

values given in [13] for a and b the limit (IV.46.b) is reached at a

temperature 8 = 1.72; for adiabatic deformation from room temperature

this temperature is reached at a strain of approximately 200%. This

limitation on homogeneous deformations for the model (IV.34) will

be discussed further in chapter (V).

q.. .,.-

P.......'
P°. o
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V. FINITE-DIFFERENCE SOLUTION OF THE NONLINEAR PROBLEM

In order to obtain a better understanding of the onset of locali-

zation in simple shear deformation, we seek a finite-difference

numerical solution to the system (11.9,12) for the general form of the

U.: constitutive equation (11.12). Numerical solutions of this problem

have been presented to interpret torsional Kolsky bar experiments

" [13], [15]. An important feature of these solutions is the intro-

duction of a geometric imperfection in the specimen. The

numerical calculations by Costin [12] show evidence of localizedIdeformation in a low-carbon cold-rolled steel (CRS) at high strain

rates, and stable deformation for a hot-rolled steel (HRS) of the same

composition. These results are in agreement with experimental observa-

tions. Merzer [13] discusses the effect of thermal diffusion on band

spreading in Kolsky bar experiments. He shows that for a thermal,

visco-plastic model of an aluminum alloy the band does not spread
~-l

significantly at strain rates of 500 s and higher.

The objective of the present study is to examine, through numerical

solutions, the response of different materials to different types of

initial perturbations in the field quantities, for various combinations

of boundary and loading conditions. A number of constitutive equations

is considered in order to study the relative effects of strain-hardening

and thermal softening. We consider the following system of equations:

av _ 1 
(1at • 0.ay (v.1)

ay P av(V.2)
.-

* t 8y . . '.~U* . *
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p2

at-ro - + r T (V. 3)at 0 2 1 at

T = P)(V. 4)

Elastic effects are not considered in this model, in order to facilitate

the calculations; however, this approximation is not expected to affect

the results significantly since elastic strain rate is much smaller than

the plastic strain rate. Equation (V.3) has a quasi-linear term, while

equation (V.4) is, in general, fully nonlinear.

Before presenting the finite difference formulation, we point out

that we seek the qualitative behavior of the solution, which makes the

stability of the difference method our primary concern and the method's

~- a.accuracy of secondary importance. However, accuracy has to be kept

within reasonable limits to satisfy the consistency requirement. An

essential objective in this formulation is to be able to resolve the

time scale on which major changes in the solution occur. This makes an

explicit formulation preferable to an implicit one since small time

steps are required for good time resolution and the implicit schemes

have the associated difficulty of requiring the solution of a system

of simultaneous equations at each time step. Thus, the unconditional

stability feature of implicit schemes is less attractive for the type

of problems considered. Use of an explicit scheme requires the choice

of a "proper" time increment, where a "proper" time increment is the one

V. that maintains scheme stability and is large enough to give good

computational efficiency.

The difference formulation is presented for the system (V.1-4)

with the following auxiliary conditions.

A4..-
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A. Initial Conditions

For a constant overall strain-rate, initial conditions for velocity,

'. strain and strain-rate are:

v(y,O) = y, y P(y,O) = Y0 , P(y,0) = i.

The initial condition for the temperature is assumed to be

i O(y,O) = 1 + 6p(y)

where ep (y) is a small perturbation. The perturbation is taken to be

either a smooth periodic fluctuation, or a step perturbation over a

narrow region near the center of the slab thickness.

p .pThe initial conditions on YY and 0 are used to calculate

the initial stress T(y,O) from equation (V.4).

Alternatively, for quasi-static deformations with a geometric

imperfection, we take the thickness in the direction z to be a

function T(y). From equilibrium the shear stress must satisfy

T (y,O)T(y) = Const. (V.6)

The initial temperature is taken to be 8(y,0) = 1. The corresponding

initial strain rate jP(y,O) and initial strain yP(y,O) for which

(V.4) is satisfied is obtained by assuming yP(y,O) and yP(y,O) to

be proportional, i.e.

S(yO) = Y(y,O).

Substituting this expression and (V.6) into (V.4), and requiring the

mean strain rate to be unity, we obtain the constant in (V.6) and the

initial strain rate distribution.

I',. "."-.' '. -" " " "- - "."."- " "-. -". ".."."- . -. "- ''''' ,-..',"- ." '-, " - -" ." "-"" -- "-"-
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B. Boundary Conditions

We can prescribe either velocities or stresses at the boundaries

y = 0 and y = 1. For most of this analysis we assume velocity

boundary conditions of the form

V(0,t) = 0

a. )I(V.7)
V(l,t) = 1

We assume that the deformation occurs without heat transfer from the

slab. This condition is ensured by the boundary conditions

S0,t) (t (,t) - 0, (V.8)
Dy ay

V.I. Finite difference formulation

Our basic formulation is concerned with the dynamic problem in

which inertial effects are retained. We confine our attention in this

part to the case of velocity boundary conditions.

The key idea in this analysis is to rewrite the system of

equations (V.1,4) in a modified form that reflects its "parabolic"

nature. For this, differentiate (V.4) with respect to y to obtain

8T -= S 1  + S +I. S 3  (V.9)--. ay lay 2ay 3ay

where
-

= S (V.10a)

aiy

s2  - (v.10b)
2 ae

a..*

a.8

,%a ,-% , , , . ,%% . ,~% %% ., % , % ,-, . , % . ,. .. q ., • , . , - • . ,-%' '



- 37 -

and

S p (V. 10c)

3 *

From the compatability relation (V.2), we get*
:2

ay (av _ a2v

ay ay ay a 2 2

Substitution of (V.11) and (V.9) in (V.1) gives

;tv S EM + + s -l (V.12)
at P ay2  2y 3ay

This form of the momentum equation can be viewed as a parabolic equa-

tion for the velocity v(y,t) which is similar to the well known

diffusion equation

au 2 u (V.13)
at ax2ax2

but with variable coefficient S1 (y,t) and lower order terms. Sub-

stitution of the shear stress of (V.4) into (V.3) allows the governing

equations to be written as the following system of three evolutionary

equations.

2v{S + s 2 6 + s x (V.14)
at P 0  1 ay2 2 y 3 ay

a = av (V.15)
* at ay

*ae a2o p.p a
at r 32e + at (V.16)

a

*This step is the reason for not considering elastic effects.

%I
6%

.-.
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Introducing the solution vector

hv

= y (V. 17)

we can write the system (V.14-V.16) as

A =A y  + A Y(Y (V.18)

.-,

-* where

0 S3/P S2/P
3 0 2 0

A". A 1 0 0 (V.19)

r14 0 0

1 0

A y 0 0 0 (V.20): 0 0

We introduce the following terminology for finite difference

quantities

h Ay... spatial increment

k At ... time increment

f. 4Y v o
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Wn

x n x(jh,nk) ... Value of the variable x at

th th
the j node and the n time

level (assuming that x(y,t)

coincides - at least locally -

with the described values 
x.n

at the respective nodes).

We make use of the difference operators

D +(h) .... forward difference operator

D (h) .... backward difference operator

D (h) .... central difference operator

where

D+()x] n n
=(h)x (xl -x.)/h (V.21)

+ i J+l j

D (h)x = (x -xj _1 )/h (V.22)

nO(lx n
(h)x = (xj -x )/2h (V.23)

0 j j+l j-1

The difference operator D+(h)D(h) = D (h)D+(h) represents the

symmetric second order difference operator, i.e.

nn n n 2
D+ (h)D_ (h)x = (x+ -2x.+x. 1 ) /h (V.24)

We will use the operators D (h) and D+ (h)D_ (h) to approximate

first and second order spatial derivatives, respectively. Also,

D +(k) will be used to approximate the time derivatives.

We will solve the evolution equations (V.14,16) in the given order,

,..".
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using the updated values to modify the calculation. Therefore,

difference equations can be given, for interior nodal points, as

* * follows:
.-'-if l w 1Vnn n D n n Dn

D (k)v. =- {S D (h)D (h)V + S D (h)n + S D (h) (y)_. (V.25)
+ j P0 0 

I j + - 2j0 j 3j 0

P n n+l (.6
D+ (k) (y D) (hv(

and

.D ()n oD (  D (h n.n n+l n+l. n+1

.D(k)e r 0 D + (h)D (h)e. + r [ Oj,yj ,yj )]D 0(h)v. (V.27)+ + - j

n+l
The shear stress T. is evaluated from

I

n+l ,,n+l (,P)n+l n+l

, ( . , [D (h)v . (V.28)
) j 0 j

Spatial derivatives at the boundaries are approximated by a second
V,.

• " order discretization derived by the method of undetermined coefficients.

-' The results are

... a - f0 + 2 f - L f2 ) / h + O ( h 2 )  (V.29)

afy= 2 0 1 2 2

'fyN 2 fN- + I fN 2 )/h + 
O (h21  (V.30)

a22
S (f -2f f N)/h + 0(h) (V.31)

21 2

.1 '2j " (fN - 2 fN-1 fN- 2 )/h + 0(h) (V.32)

ay 2A N N. . . .

Y ~ a.
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Since the boundary conditions are prescribed for the velocity v(y,t)

and the temperature O(y,t), we do not need to use (V.31,32). There-

fore the order of accuracy of the scheme (V.25,30) becomes

2
E = O(h ,k) i.e. 0(2,1). (V.33)

Consistency of the scheme with the original system (V.18) requires

that E is at least 0(1,1), therefore (V.33) implies consistency as

well.

V.2. Stability of the difference scheme

The notion of scheme stability we use is a modification of the

*Von-Neumann stability criterion [18] discussed by Strang [20] which,

for the system (V.18), gives the stability requirement:

k IMax eigenvalue of AYY_ f 1

h22

From (V.20) this requirement is

-Jk _____ _)
( ~maxi(Yt1
2. POc - 2
h0

In general, S (y,t) > k/c so that the limit on the time step is

k < 2sl(Yt) (V.34)

The criterion (V.34) used to bound the time increment k is an

approximate one based on freezing the coefficient S1 (y,t) between

time levels. We evaluate the right hand side of the inequality at each

time level and set

'. '* tr * * . " .. ."- . .. . .. "v... .. .. ', .. " .' . :" . .
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r

n+l I ph 2 /21
k (0.97) -min 1 -n (V. 35)

j I (S 1))

n+ 1
where k. is the time increment between levels (n) and (n+l).

V.3. Formulation for stress boundary conditions

The analysis of the case where stresses are prescribed at the

boundaries is simplified by rewriting the governing equations in a

form that allows the solution to be obtained following the same procedures

used in the case of velocity boundary conditions. Differentiating the

constitutive equation (V.4) with respect to time, one obtains

S 2 + S3 (V.36)
at I3a. 2 2 at 3 atat

where, S ,S2  and S3  are defined by (V.l0,a,b,c). From (V.1) and

(V.2) we have

2 P 1 2
L.- • (V.37)

4at

2  po ay2

Then, substitution of (V.3), (V.2), and (V.37) into (V.36) gives the

following evolutionary equation for the flow stress
4

ST S1 a +S2 (r0 a 2 + r Ty + S3 Ly (V.38)
t aP y '2 y2

Introducing the solution vector

T

p,

• "Z (V.39)

. .........,..-... €......................-................................... ..... ............ * - .-. -.. , *-4 % ,%o-4

** ** ** ** ** * * * * .. .. s* -. .* .. .*. . .. .* -~4. * . . * -4'
4 ~ . -
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we can write the governing equations in the form

z BYz + BYYz (V.40)
.t ,y ,yy

where

0 rIS2 + S3  0 0

1/p 0  0 0 0

BY  (V.41)

0 1 0 0

0 r"T 0 0
.9

and

S1/P 0  0 0 r0S 2

10 02

0 0 0 0
By  = (V•.42)

90 0 0 r00 0 0 r

AL

The numerical solution of equation (V.40) is obtained by an ex-

plicit finite difference scheme analogous to that described in the

previous section. The spatial derivatives are replaced by central

9i differences while time derivatives are replaced by forward differences.

- The system of evolutionary equations is solved in the order of the

components of the vector.

The scheme stability is analogously determined by the requirement

IMax eigenvalue of B k  (V.43)
~ h2

'9
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Computational evidence show that scheme stability is ensured by using

.P. k = 0.97 p-h) (V.44)~2S 1

which is the same step size used for the case of velocity boundary

conditions.

V.4. Formulation for the case of geometric inhomogeneity

We seek a finite-difference solution to the general nonlinear

- system (11.9,12) for the case of a thin-walled tube with a groove in

it as shown in Fig. (V.1). The tube is subjected to torsion which, for

sufficiently small values of the ratio of wall thickness to tube radius,

is a good approximation of simple shear.

Numerical simulation of this problem has been presented by

Litonski [151, Costin, et al, [121 and Merzer [131 for the case of

quasi-static deformation. They assumed homogeneous deformation con-

ditions in each uniform thickness section of the tube. Merzer [13)

included heat conduction.

A complete numerical solution for this problem is presented --

accountinq for inertial effects, and without imposing the assumption

of deformation homogeneity in uniform thickness regions. The system of

governing equations is taken to be (V.1,4). Due to the geometric

discontinuity, modifications are required in the initial conditions.

In addition, boundary conditions are required at the surface of dis-

continuity. To obtain these conditions, consider a strip of width 2E

at the edge of the groove as shown in Fig. (V.2).

Let '-' and '+' denote evaluations of the various quantities at

the left and right hand sides of the edge shown in Fig. (V.2).

' 99,..*'.., .. ...,,. . ...€... .. ,* ...,.',.. .. .'.' .. '.'. --. •. ,". . , ... .''. .'..'...."....* .." . - 4.". . .2'''''
," ' , .,. - • . ".. -. . *,. ...... . .. . . _€... ... *,, .,,,,$. t** .*-*** --------* .*.* .2 .5 % >_ A,..'u'
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Figure (V.1) -Longitudinal Cross-section in
, the thin-walled tube with the groove (6, S1
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Figure (V.2) Imaginary strip at the border of the groove.
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Continuity of particle velocity, temperature, and shear force

(or torque) gives

6- N

V = v (V.45a)

O- = (V.45b)

T = XT ; < 1 (V.45c)

where X = A +/A is the ratio of the cross-sectional areas.

Consideration of energy flux into the strip of width 2E, and

*%:-% taking the limit as E- O gives the additional relations

X . (V.45d)
F ",

Equations (V.45a-d) are the conditions that are to hold at the interface

y = Y0 "

V.4.a. Finite-difference solution

The symmetry of the problem allows us to consider only the solution

in the half y E [0,1/2]. The initial conditions are chosen such that

the system of governing equations (V.1-4) and the continuity require-

ments (V.45) are met. Plastic strain and temperature are taken to be

homogeneous. Plastic strain rate y is assumed to jump at the inter-

face in order to give the required jump in the flow stress. The

overall strain rate is maintained constant.

%'  The difference method is the same as described in section V.1,

except for the treatment of the geometric discontinuity at y = y0 *

Discretization at nodes j and j (see Fig. (V.3)) is performed

by replacing the spatial derivative D/By by forward and backward
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differences analogous to (V.29) and (V.30). The velocity at level

n + 1 is obtained by proceeding from the boundary y = 0 at which

v(0,t) = 0 to the nodal point j- 1 using equation (V.25) and

1 1 1
similarly proceeding from the boundary y = - at which v(-,t) =

2 n2 2

to the nodal point j+ l. In order to evaluate (v. ) we use thei

jump relations (V.-V'5b) and (V.45c) and the constitutive equation (V.4)

' ) = e' y~~~j+ ay j -i v 6

where all quantities are to be evaluated at the level n +1. The

velocity gradients in (V.46) are approximated by the one-sided ex-

pressions (V.29), (V.30). With the continuity of the velocity field

4. at y = yo, equation (V.46) becomes an equation for the velocity at

n+l
the interface vj . This equation is solved by either taking 6.

and y ,P _y to be the values at the level n or by an iterative
P Pprocedure in which the values of jyj+,y j_ are updated as they are

obtained from (V.26) and (V.27), with centered differences replaced by

one-sided differences.

4" The temperature is evaluated by means of equation (V.27) for all

nodal points except the nodes j ,j at the interface. The temperature

at these nodes is obtained from (V.45b) and (V.45d), using one-sided

difference operators. Finally, the flow stress is obtained from

equation (V.28).

V.5. Numerical results

The numerical solution to the fully nonlinear system (V.l-V.4) is

presented for a number of constitutive equations modelling the response
0

.5
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of visco-plastic materials. Initial imperfections of the homogeneous

solution are taken as a periodic temperature perturbation or as a

permanent geometric defect (cf. V.4). Numerical results are presented

for both velocity as well as traction boundary conditions. The dy-

namic problem is considered for all models discussed. An essential

objective is to compare numerical results with linear analysis

predictions (Chapter IV) in order to determine the usefulness

of these predictions.
,.

A. Velocity boundary conditions

We present herein numerical results for the case where velocities

are prescribed at the boundaries as given by conditions (V.7).

* A. 1 Initial temperature perturbation

The initial imperfection is taken here as a periodic fluctuation

in the specimen temperature. This imperfection is considered to be

4 weaker than the geometric defect described in (V.4). This is due to

the transient nature of such defects in contrast to the permanent effect

of the existence of a groove.

A.l.a Power law

Consider the constitutive equation

(8)V (YP)m(pn (V.47)

where

v = thermal softening (hardening) exponent

m = strain hardening exponent

n = strain-rate exponent

A series of numerical solutions has been obtained for n=l and for different

values of v and m in order to study the relative effects of thermal

softening and strain-hardening. Most visco-plastic materials exhibit
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strain-hardening and thermal softening. Under such circumstances,

it is believed that at high strain rates deformation instability occurs

as soon as the net hardening rate d4t vanishes, where 'A' refers to

an adiabatic deformation.

From the numerical solutions it appears that the vanishing of the

adiabatic hardening rate is not sufficient to ensure the onset of

localization. Indeed, the numerical solution for n=l shows remarkably stable

deformation even when the slope of the isothermal stress-strain curve

becomes negative.

Numerical results have been obtained for the following values of

the model parameters corresponding to an aluminum alloy.

Thermal properties

k P0  C

(Wm 4C -1 ) (kg/m) (Jkg- 1c -1

222 2700 903

The overall strain rates considered are in the range

[03 -81 _0l6s ].

The initial homogeneous strain is taken as y= 0.01, while the

perturbation in the initial temperature distribution is chosen asa .

Sp(y) = E sin[2n(- - y)] (V.48)
P4

where E = 0.005 or E = 0.05. The dimensional value of the homo-

geneous (unperturbed) initial temperature distribution is e = 3000K.

The slab thickness is H = 0.01m. The homogeneous initial value of

the flow stress is taken as T 10Pa.

• 4; , , . - , - • .. ,- ,, ,- ,.*,•.• . - . -•". . . .
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The dimensionless spatial step size is chosen as Ly = 1/40, while

the temporal step size is monitored throughout the calculation to meet

the stability requirement (V.35).

Numerical solutions for the power law (V.47) with m > 0, v < 0, and

n = 1 show a slight departure from the homogeneous solution at small

P
strains y < 0.05. Then, the deviation from the homogeneous solution

reaches an upper bound at which the inhomogeneous solution retracts back

towards the homogeneous solution, but at much slower rate, Figure (V.4).

For the material considered, the rate of temperature rise is slow, with

only a 1 percent temperature rise for a 5 percent plastic strain incre-

ment. The stabilizing effect of thermal diffusion seems to be almost

negligible in the deformation considered, Figure (V.6). An increase in

the amplitude of the initial inhomogeneity to E = 0.05 causes a pro-

portionate increase in the excursion from the homogeneous solution, but

it does not change the qualitative features of the solution, i.e. an

envelope is attained and the deformation remains stable.

Finite-difference solutions have also been obtained for cases with

'-l < m < 0 and v < 0 for which elementary linear stability analysis (e.q.[ll])

allows the possibility of exponential growth. For cases of thermal

softening and strain softening with n = 1, the flow stress decreases

monotonically as the solution evolves while the numerical solution continues
.4

to become more inhomogeneous as time increases; however, the time scale

on which significant departure from the homogeneous solution occurs is

extremely long --apparently too long for the localization to correspond

to the shear band development observed in experiments. A typical situ-

ation is illustrated in Piqure (V.5) which corresponds to v = -0.75,

Io

'4
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4 -m = -0.95 and n = 1 at a dynamic global strain rate of (10 )s- . Clearly,

the profiles at later times are getting closer to each other. This

appears to be due to a decrease in the plastic working as a result of

the rate of decreasing stress values. It appears that the solutions for

(m < 0) tend asymptotically to the limiting situation of a localized

deformation. However, if we confine ourselves to strain amplitudes that

are commonly obtained in the plastic deformation of real materials, we

reach the conclusion that the deformation described by the model (V-47)

is remarkably stable for n = 1.

The accuracy of the finite difference code has been examined by

calculating a solution for a special case (v = m = 0, n = 1) for which

an exact solution is available. Close agreement with the exact solution

was obtained.

A.l.b Arrhenius law

Consider the constitutive equation

T= B(y) (--)£n(.F) (V.49)
Y

discussed in Chapter III.

Numerical results have been obtained for the same Aluminum alloy

as in A. Other constants required in (V.49) are

W= 1012 s- 1

Kb = 1.38 x 10- 2 3 J/K (V.50)

-

26

W =o0.5 x 10-263

'o4'
* 4 * .',*.f a.... . . . . ... .*%.. * ;. -. * .c
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while the strain hardening function has the form

.P.0¥ P - c 7 V . 1
TB (Y) = TB (0) [1 + b(l - e )] (V.51)

where

(0) 8T = 10 Pa

b 0.5

c = 4.0.

We also introduce the following additional dimensionless quantities

(cf. [14])
TB(Y)

W -0

YO.0 (V.52)

K b K 0%

Numerical results obtained for this deformation are shown in

* Fig. (V.8). The qualitative nature of the deformation behavior is

similar to model (A.l.a) for m < 0 and V < 0, in the sense that the

solution has a tendency to become more inhomogeneous as time increases,

however, the deviation from the homogeneous solution again occurs

very slowly. The deformation governed by the Arrhenius law remains

contained even when the point of maximum stress is reached, which

appears to be strong evidence for stability. In this sense the numer-

ical results appear to be consistent with the predictions of the

linear stability analysis by Clifton et al. [14].

The numerical result shown in Fig. (V.8) is obtained using the

hardening function given by

4;

€or; -' ":.."v .'.," "%.,'"
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1 f0) P P .TB(YP) Y ( P + f0 for Y < :5Y

Y ffr(V.53)
p *

fory >y

where the dimensional values of the parameters are

fo = 10 8 pa, f = 1.5 x 108 pa

and (V.54)

y =0.15

A.l.c Bodner-Merzer law

Consider the constitutive equation

TI (WP c(e)
(f(n)] (V.55)

defined in (IV.5.3). Numerical values for the material constants are

taken to be the same values given by Merzer [13]. Non-uniformity of

the strain-rate along the length of the specimen continues to increase

as the deformation proceeds. For e = 0.05 the deformation becomes

strongly localized. Computed profiles for e = 0.005 are shown in

Figs. (V.9.a-d).

The instability obtained for the model (V.55) can be attributed to

two main reasons:

1) The strong thermal softening that overcomes strain hardening

throughout the deformation process, see Fig. (V.9.c);

2) The extreme sensitivity to temperature which has been dis-

cussed in (IV.5.3).

The instability reported by Merzer (13] for this model - in the

case of a geometric imperfection - has been ascribed to the "persistency"

of the geometric defect; however in view of the unstable response

.

'..4.. ' ' ' .- - o . . . . , , ,- , , . , a ~ , u ' . .r S ;
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of this model to a "transient" temperature perturbation it is

evident that the details of the constitutive model as well as-the

nature and magnitude of the initial imperfection play important roles

in the localization process.

A.2 Geometric imperfection

We consider numerical results for the problem described in (IV.4)

pin which a permanent groove is introduced in a thin-walled tube, Fig.

(V.A). The groove is characterized by

X = 1.04 and 6 = 0.1.

A.2.a Power law

The computed profiles for the model (V.47) are shown in Figs.

(V.lO.a-d) and (V.ll.a-d). Clearly, for n = 1 the power law - again - gives
/

strongly stable response in spite of the initial jump in the strain rate,

-i Fig. (V.10.d). The difference between temperature levels inside and

outside the groove remains less than one percent up to total strains

of 40 percent, Figure (V.10.b).

For the case of m > 0; the stress rises monotonically while

it decreases monotonically for m < 0, Figures (V.10.c), (V.ll.c) re-

spectively. The maximum rise of the strain rate from its initial value

(inside the groove) is less than one percent which is strong evidence

of the stability obtained for the power law given by (V.47), with n = 1.

M .

- - ..-
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The effect of strain-rate hardening on the response for the power

law given by (V.47) is examined by choosing the parameters v, m and

n to correspond to two steels, namely a cold-rolled steel (CRS-1018)

and a hot-rolled steel (HRS-1020). Experimental investigations [19]

showed that deformation localizes into shear bands in the CRS whereas

the HRS showed a stable response.

Numerical values for the parameters used in this computation are

CRS-1018 HRS-1020

v = -0.38 v = -0.51
m = +0.015 m = +0.12
n = +0.019 n = +0.0133

T 436 MPa r = 261 MPa
0 0

Thermal Properties:

k Po C

Wmlo-1 kg/m3  Jkg-i o -C

54 7800 500

The length of the specimen is taken as 2.5 mm and a dynamic

global strain rate of 103 s-I is considered. The groove characteristics

are

A = 1.02 and 6 = 0.05

The results of this calculation are shown in Figures (V.12.a-f) and

(V.13.a-f) for the HRS and the CRS respectively. The solutions indicate

remarkably distinct behavior for the two steels considered. The

strong hardening rate exhibited by the HRS seems to stabilize the

deformation, whereas the deformation of the CRS localizes inside the

groove as soon as thermal softening overcomes strain and strain-rate

.

.. .' -. . - . , - ,2Ajf2, .... 
.
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hardening. Furthermore, for the CRS the shape of the profiles in-

side the groove indicates a strong localization process. These re-

sults are - qualitatively - in agreement with experimental observa-

tions in [19]. The instability observed for the CRS with n << 1 and

the stability shown in Figures (V.11) for n = 1 are consistent with

the predictions of the linear stability analysis (cf. (IV.32)) which

allows large growth rates for small values of n.

A.2.b Arrhenius law

The response for the case of the Arrhenius law (V.49) with a

* geometric defect is presented in Figs. (V.14.a-d), (V.15.a-d) and

(V. 16. a-d).

The computed profiles show a wave-like solution at early times

(yP < 0.25). This feature is attributed to the strength of the

strain hardening coefficient S3 relative to the viscosity coefficient

S1 at early times. For S1 << S3, the momentum equation (V.14) can

be written as

p - =s 2 .L6 + s3 -i--. (V.56)

Moreover, if heat diffusion is neglected due to its small influence,

'we can set
~ae

3 - rlTr. (V.57)
at 1

-. Using the comparability equation (V.15) to eliminate (v), we find

2 P aS S2- (=I) + (-- + "L.O.D." (V.58)
2  P 2 p 2

a t 0 a y ay

-. _ . . . _. . . . .. *; ' ' ' ' , % /,, ' "- _ .. .- .' .. . -
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where "L.O.D." stands for "lower order derivatives". Differentiating

(V.58) w.r.t. time, we get the following wave equation for the plastic

strain rate

2 p 3 1 2 ay2 (.9
at 0

observing that S 2< 0 for the thermal softening features of the

Arrhenius law, we can see that at early times when S 1can be neg-

lected with respect to S83F a wave-like response is obtained when the

strain hardening (S 3 > 0) dominates the thermal softening (8 2 < 0).

This analysis is supported by the numerical results shown in Fig.

(V.16.a-d) where no hardening is considered and the wave-like early

response is totally eliminated.

Consideration of the late time response for the case of the

Arrhenius law, suggests that the existence of a permanent groove in

the specimen contributes to an instability. This can be seen by

*noting the large temperature increase inside the groove relative to

p that outside it, as well as the increase of strain rates inside the

groove and their decrease outside the groove. In spite of these

instability features we regard this response as essentially stable

for practical purposes. That is, although the deformation begins

4' with strain rates inside the groove which are 4.5 times larger than

those outside, the final strain rates at y =1.0 are only 6 times

larger than those outside the groove. Therefore the observed in-

stability is very weak even with a substantial initial jump and with

continuation of the deformation to large strains. we prefer to reserve

the term instability for cases analogous to reported experimental
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results on shear bands in which the strains within the bands are much

larger than in neighboring regions.

* .. "The results shown in Figure (V.15.a-d) are obtained for a

shallower groove, X = 1.004, the difference between temperature levels

in and out of the groove is less pronounced. Moreover the difference

between strain rates is less than that obtained for X = 1.04, and

the strain rate inside the groove at yP = 1.0 remains well below the

p
value at y = 0.0.

The results obtained for the non-hardening idealization axe pre-

sented in Figure (V.16.a-d). Wave-like early response is completely

eliminated upon removal of the strain hardening. At late times the

differences in strain rate are comparable to those obtained when

strain hardening was included. This result is consistent with

.-:regarding the response as stable for the case of the Arrhenius law,

since even for such strongly destabilizing conditions as a groove and

no strain-hardening the deformation does not become much more non-

uniform at late times than it is initially. Computational experiments

performed for the Arrhenius law revealed negligible sensitivity of

the results to heat conduction.

A.2.c Bodner-Merzer model

Numerical results for the model (V.55) have been reported by

Merzer [13] for a specimen with a groove. Our results for the same

problem are shown in Figs. (V.17.a-d). In order to improve the

accuracy of the solution near the groove a finer mesh is used than in

[13] and jumps across the groove boundaries are accounted for ex-

.1
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plicitly. A two-level, explicit, Du-Fort and Frankel algorithm is

used. Details of the numerical method are given in Appendix II.

The qualitative features of the solution are the same as those

obtained by Merzer [13]; however, the temperature and strain rate

amplitudes inside the groove are higher than reported values [13].

This difference is believed to be a consequence of numerical errors

caused by the use of a coarse computational mesh in [13].

The response obtained for this model is quite strongly un-

stable relative to other examples considered herein. One factor con-

tributing to this instability is the relatively weak strain harden-

ing, for which the material begins softening immediately, see Fig.

(IV.17.c). Another is the fact that the strain rate can increase in-

definitely without increase in stress as the temperature 6 = 1.72

is approached (cf. IV.46.b).

B. Stress boundary conditions

Numerical results are presented in this section for the case of

simple shear of a uniform slab subjected to the stress boundary con-

ditions

T(0,t) = T(l,t) = T(0, 0) = T(l, 0) (V.60)

The constitutive equation is taken to be the power law (V.47) with n= 1. An

initial temperature perturbation (V.48) is considered, with E = 0.005.

- Two cases are considered as being representative of the response of

materials that can be modelled by (V.47); the first is for v = -0.75

and m = +0.1 while the second is for the same v but with m -0.95.

!- .... -.- .- - . '. .- . -. . . :-.-.9'-. . ... . ". .K;- . • ", . ".. " * ' % * ". ' *.% ** ' . . . "'."
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The behavior for m > 0 is remarkably stable. The deformation

tends to become more homogeneous with increasing time, see Fig. (IV.18.a).

This stable response results even when the point of maximum load is

passed, i.e. for yP > 0.025. On the other hand, the response for

m < 0 is remarkably unstable. Shear bands form at the two boundaries

where strain rates are 24 times higher than their initial values (see

Fig. (V.19.d)). Moreover this intense shearing occurs at relatively

Psmall strains (y = 0.05), indicating a strong bifurcation process.

As a result of thermal softening and strain softening, the flow

stress decreases monotonically except at y = 0 and y = 1. Sustaining

high stress levels at the boundaries leads to the softening of the

material there and to the resulting shear strain localization.

A similar qualitative response is observed for the Arrhenius law

given by (V.49) with no hardening. The deformation tends to become

more inhomogeneous as time grows; however, the speed of deformation is

slower than that obtained for the power law, see Figures (V.20.a-d).

Strain rates are only (1.5) times their initial values at 50% of plastic

straining. This slow localization can be explained by the weak thermal

softening exhibited by the Arrhenius law as well as the absence of the

isothermal strain-softening, see Figure (V.20.c).

The response for the Bodner-Merzer constitutive model is - again -

qualitatively similar to earlier results; however, the rate of heat

generation is much higher as compared to the power law or the Arrhenius

law, see Figure (V.21.b). The limit (IV.46.b) imposed on temperature

by the constitutive law (V.i5) is reached at the specimen boundaries for

total plastic strain of approximately (35) percent.
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The remarkable feature of the solution of the simple shear problem

with traction-controlled boundaries is that the same resnonse is obtained

whether or not the initial solution is perturbed. In other words,

the solution of an unperturbed dynamic problem with stress boundary

conditions becomes immediately inhomogeneous as deformation proceeds.

The evolution of inhomogeneous deformation seems to be a consequence

* of the imposed stresses at the boundaries, since holding stresses to

y. be constant there while allowing stress to decrease in the interior

creates sharp stress gradients in the vicinity of specimen boundaries;

as a result, strain rates become large - forming regions of localized

deformation. This feature of the problem with stress boundary condi-

tions is discussed further in Appendix (III).

V.6 Concluding remarks

For velocity boundary conditions, simple shearing deformations

are remarkably stable for the three constitutive equations considered

except for the Bodner-Merzer model and the power law with n << 1.

The localization observed for the Bodner-Merzer model appears to be

due to a non-physical degeneracy of the model at finite temperatures

that may be reached during adiabatic experiments. The localization ob-

served for the CRS with n << 1 is viewed as indicative of the effects

of thermal softening, weak strain hardening and weak strain rate

sensitivity in obtaining significant strain localization at moderate

strains. Although a persistent geometric defect, such as a groove,

appears to be slightly more destabilizing than an initial perturba-

tion in, for example, temperature, the essential conclusions

regarding the stability of simple shearing deformations do
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not appear to be changed substantially by the type of inhomogeneity.

-. However, the strength of the inhomogeneity plays a significant role.

For stress boundary conditions it appears that simple shearing

deformations are much less stable. For a power law model with iso-

thermal strain softening, localized deformations occur at relatively

small strains.
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Figure (v.19.a) - initial temperature perturbation, Figure (V.lg.b) - Temperature profiles for
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APPENDIX (I)

Closed Form Solution of a Linear, 1 st Order,

.~ Time-Dependent System of Equations

Consider the system:

F = W(t)F (i)

-" with the initial condition

F(t 0) F (2)

Claim:

If W(t) commutes with W(T)dT,

then

1 t
F(t) = exp I W(T)dT F(t0) (3)

is the unique solution of (1) and (2).

Proof:

Let K(t) be a fundamental matrix of the system (1), i.e.

K(t) = W(t) K(t) (4)

and det. K(t) 71 0. Then the solution of (1) and (2) can be written

Sas -
a F(t) = K(t) K -(t 0 ) F

° . (5)

Introduce the notation

0(t,t0) = K(t) K- (t ) (6)

for the fundamental matrix *(t,t 0 ) which is the solution operator

of the system (1) and (2).

Assume 0(t,t 0) exp {M(tt 0)} (7)

Where M(tt = f T)dT (8)

1
'o0
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It is clear that f(t,t 0) satisfies (1), i.e.

.(t,t 0 ) = W(t) (t,t 0 ) (9)

We seek a proof that (7) satisfies (9). Moreover, we are guaranteed

that this solution is unique, (Haar's uniqueness theorem)*.

exp{M(t)} = I + M + Mm +
2!

Then the R.H.S. of equation (9) becomes

R.H.S. = W + WM + .L WMM + . (10)

While the L.H.S. of (9) becomes

=,dt 0

(I + M + + .

dt

2

= W + _. MW + + -..V.

2! 32

= W + MW + 2L MMW + ........ .
42

., Comparing expressions (l0), (11); we conclude that, if W(t) commutes

with M(t), i.e.

MW =WM

then (10) and (11)are identical, and consequently f(t,t 0) is .-he

unique solution to (9).

q*

In general, for A = f(A,t) if f is "Lipschitz Continuous", there

is one and only one solution A(t) satisfying

A(t0) A.
0 0*

i'
9.
.9

.9%

. . . . .. . . . . . . . . . . . . . . . 94
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'.4.

From (5) and (6), wefind

':', F(t) = exp~ W(r)dT Ft O

~which completes the proof.

I...

2'p.

,S°°-

,.4

*j, L ,.q :'.. '-:4 z -> . . . , : . . - _ . ... ' ' - , , . '. -.
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APPENDIX II

Numerical Solution of Merzer's Problem

The outlines of the numerical algorithm are discussed in (V.4).

The governing equations used are

o at I a 2s 2 a 3ay (1)

" " 7P  av
"- -_ _ (2)
at ay

.3T 22

at" pot 0) y2 p 0 C t

":""'" I I~~[ (.1/2 / (a/O+b)" , I( 0

T :2 :n(--F3 y

where

3SlT T

S, p P

' ayP  ntP f n)

,St T arZf(n) ]/(2e2n )

$3W ) = -AT/( 1-A)

T 1 1f;p0 ()

T Ifi- ) IC(0)
'6 f
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f (r) 2 L, ;l T 2%O

* Y
C() -- 1/2 a

n(0( ) n () - b.n (e

Evaluation of velocity at the interface:

The interface velocity, say v is obtained by means of equation (V.46),

as described in (V.4) assuming that

(Y P+ 1. 0
(NP) - 1.

From (V.46) we obtain

y"+ = (2D0  eW) (5)

where
1

E(e) = (A)C(M); A = A-/A > 1.

We approximate the strain rates by second order one-sided derivatives as

follows:

.+ -3 1
,y (2'h-)v + [" (4v+l-v)] (6)

3 , 1 (7)
(-h)v + I- (-4v_+v 2)]()

substitution of (6) and (7) in (5) gives a nonlinear equation for v

which is solved by Newton's method. The initial velocity distribution

is obtained in a similar manner where the jump in the flow stress is

satisfied through an equivalent jump in the strain rate assuming con-

tinuous strain and temperature distributions.
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Finite-difference formulation

Computational experiments for the considered system of equations,

with Merzer's values for the parameters, indicate that the formal

explicity scheme is no longer efficient. Therefore, the scheme is

improved by using the two-level, explicit, stable Du-Fort and Frankel

algorithms, with careful choice of k, h to maintain consistency. The

additional initial value is evaluated by the formal explicit, one-

level method; the formal method with time step ki  is used until we

reach t = nkI = k then the calculation is continued by the Du-Fort

and Frankel method with a uniform time step k2 >> ki . The efficiency

- of the algorithm is strongly improved by this technique. The accuracy

is also improved since the Du-Fort method is second order in time

and space.

The Du-Fort and Frankel approximation to the standard heat equation

2
a au a u
at - (8)

is given by

n+l n-l n ( n+l n-l n
u -u. u+ -(u +u. ) + uJ-1 (9)

2k h2

Our system has variable coefficients and lower order terms; however,

computation evidence shows the utility of this algorithm. The algorithm

described in (V.4) is applied for this system of equations with the

exception that we use Merzer's constitutive equation and the differ-

encing procedure illustrated in (9).
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APPENDIX III

-On the lack of Homogeneous Solutions for the Case of
Stress Boundary Conditions

Consider the momentum and compatability equations (11.9) and (II.10)

av _T

0 at = y

3Y _ 3v 1 DT
at y G at (2)

Assume there exists a homogeneous solution for the velocity and stress

given by

v(y, t) = V(t)y (3)

" ~T (y , t) = ~ ) .(4)

Substituting solution (3), (4) in (1), (2) we obtain

p0 v (t)y = 0 -(t) = 0

i.e. V(t) = V (Constant) (5)

Moreover, Equation (2) yields

o G V - 'velocity b.c.(6)

.
Now, let us distinguish two cases

A. Velocity boundary Conditions:

In this case, V(0, t) = 0 , v(l, t) = V , and Equation (6) is
0

.a.
(t) (7.A)

=V 0 T(t'velocity b.c.

.9
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where the last term is the stress rate obtained for the homogeneous

solution corresponding to the velocity boundary conditions.

B. Stress Boundary Conditions:

In this case, r(t) is prescribed at the boundaries and - in turn -

across the specimen since the solution is homogeneous, hence; Equation (6)

reads

y =V - (t)j (7.B)
0 G prescribed

Comparison of Equations (7.A) and (7.B) allows us to conclude that the

only way by which (7.B) is satisfied becomes

S(t) prescribed = velocity b.c.

In other words, the unique possible homogeneous solution is the one

that corresponds to velocity boundary conditions, otherwise the solution

becomes inhomogeneous as deformation proceeds.

"

.* -

4 , . .. .. .. . . . .. .. . .. . . .. , . . .

".5.i' ' - f .' ' . €' ' ,' ' '€ .. '-.''.-'-. .". v -' " "" ' v . . .1. / • _" -' -
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APPENDIX IV

The Rate of Growth of the Energy

Norm in the Linear Stability Analysis

Consider the system of linearized partial differential equations

defined in (IV.7) by

L()= ()

mThis system can be rewritten as
AtW, t = B2y + BlTy + BOY (2)

where

Sy2  B1  -A and B =-A

- Introduce the change of variables

w = Dz (3)

where

1 o o o

0

0 /- 0 0 (a: . D (f 3a)

0 0 1 0

0 0 0 1

Then the system of equations (2) becomes

P
S .' . ' . --. , - .- .
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2 B Zyy + C z, + C z 
(4)

where

C1 = DB1D and C0 = DBoD (5)

The matrices B2 and C1 are symmetric; B2  is positive, semi-definite.

.4 Now consider the rate of change of the energy norm of the solution

fHH o z.zdy (6)

From (4) and

- <z,t,z> + <z,z,t>

we obtain

4 <.( > -- <(B 2 Zyy + C 1 ,y + c 0 s) ,z> +

+ (<z (,B2 Z, + C Zy + C0 z)> (7)

Integration of the second derivatives by parts gives

<B2 !,yyZ > + <z,B 2Zyy> = -2<B 2 ZyZy> (8)?!
plus boundary terms which vanish for boundary conditions of either pre-

scribed heat flow or prescribed temperature. Since B2  is positive,

semi-definite, the right side of (8) is non-positive. Integration

of the first derivatives in (7) by parts gives

--+ CluY> = -<cl.z, + <Z,ClZy> (9)

* V. . .. .Z*y. > < , C ,y * * * * z. ~ . * z * -* * - . Y - . .~ ~
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plus boundary terms which vanish for prescribed velocities or prescribed

shear tractions. From the symmetry of C1 , the right side of (9) is zero.

Use of the results (8) and (9) in (7) gives

a(

or
)2

't 11zl 2 1 Co1 11 I2on

where 11 zj1 S <z,z> and 11C 0 (t)112 is the L2-norm of the matrix C0 (t).

Integration of (11) gives

2 exp t211C0(n) I2d Ilz(0)I (12)I(t) 112 -f fo 0-12 (n2)

or

I Iz(t)11 2 < {exPn[rmax IICo(n)11 2t]}Iz(0)11 2  (13)

Using the equivalence of norms for finite-dimensional spaces, we can, for

convenience, replace the L2-norm of CO with the maximum norm to obtain

"exp maxilc (n) II.t]IIIz (0) 12 (14)
1' 1E (t) 12  (14)n

The well-posedness of the system (2) is ensured provided that

max 11C 0(n) I I.,< a (15)
. nE[ot]

where a is a positive constant.

aThe estimate (15) gives the inequalities (IV.24) obtained from the

analysis in Chapter IV for finite wave numbers F.
-ai


